Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 386: 110023, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463775

RESUMO

Skerpikjøt is a traditionally ripened sheep leg product from the Faroe Islands, constituting a relatively underexplored microbial ecosystem. The objective of this study is to achieve a deeper understanding of the microbial composition of this artisanal product. Nine ripened hind legs, obtained from three different producers, were assessed regarding their bacterial communities and contents of biogenic amines, including both surface and core samples. Biogenic amine concentrations were generally low, although one sample had a somewhat elevated concentration of cadaverine. Bacterial diversity was investigated by culture-dependent and culture-independent techniques. Gram-positive catalase-positive cocci (GCC) constituted the most abundant group. Within this group, Staphylococcus equorum was the most prevailing species, followed by Kocuria sp., Mammaliicoccus vitulinus, and Staphylococcus saprophyticus. Lactic acid bacteria prevailed in only one sample and were mainly represented by Latilactobacillus curvatus. Enterobacterial communities were characterised by the prevalence of Serratia proteamaculans. Despite the majority of GCC, Clostridium putrefaciens was the most abundant bacterial species in some core samples. Taken together, the culture-dependent and culture-independent identification methods gave complementary results.


Assuntos
Ecossistema , Produtos da Carne , Ovinos , Animais , Produtos da Carne/microbiologia , Fermentação , Bactérias , Lactobacillus , Aminas Biogênicas
2.
Int J Food Microbiol ; 354: 109322, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34247021

RESUMO

During spontaneous meat fermentation, diverse microbial communities develop over time. These communities consist mainly of lactic acid bacteria (LAB) and coagulase-negative staphylococci (CNS), of which the species composition is influenced by the fermentation temperature and the level of acidification. Recent development and application of amplicon-based high-throughput sequencing (HTS) methods have allowed to gain deeper insights into the microbial communities of fermented meats. The aim of the present study was to investigate the effect of different fermentation temperatures and acidification profiles on the CNS communities during spontaneous fermentation, using a previously developed amplicon-based HTS method targeting both the 16S rRNA and tuf genes. Spontaneous fermentations were performed with five different lots of meat to assess inter-lot variability. The process influence was investigated by fermenting the meat batters for seven days at different fermentation temperatures (23 °C, 30 °C, and 37 °C) and in the absence or presence of added glucose to simulate different acidification levels. Additionally, the results were compared with a starter culture-initiated fermentation process. The data revealed that the fermentation temperature was the most influential processing condition in shaping the microbial communities during spontaneous meat fermentation processes, whereas differences in pH were only responsible for minor shifts in the microbial profiles. Furthermore, the CNS communities showed a great level of variability, which depended on the initial microbial communities present and their competitiveness.


Assuntos
Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Produtos da Carne , Microbiota , Alimentos Fermentados/microbiologia , Produtos da Carne/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética
3.
Front Med (Lausanne) ; 8: 657313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055835

RESUMO

Most tissue biopsies from patients in hospital environments are formalin-fixed and paraffin-embedded (FFPE) for long-term storage. This fixation process produces a modification in the proteins called "crosslinks", which improves protein stability necessary for their conservation. Currently, these samples are mainly used in clinical practice for performing immunohistochemical analysis, since these modifications do not suppose a drawback for this technique; however, crosslinks difficult the protein extraction process. Accordingly, these modifications make the development of a good protein extraction protocol necessary. Due to the specific characteristics of each tissue, the same extraction buffers or deparaffinization protocols are not equally effective in all cases. Therefore, it is necessary to obtain a specific protocol for each tissue. The present work aims to establish a deparaffinization and protein extraction protocol from FFPE kidney samples to obtain protein enough of high quality for the subsequent proteomic analysis. Different deparaffination, protocols and protein extraction buffers will be tested in FFPE kidney samples. The optimized conditions will be applied in the identification by LC-MS/MS analysis of proteins extracted from 5, 10, and 15 glomeruli obtained through the microdissection of FFPE renal samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...